ERZEUGUNG VON PYRANANIONEN

R.R.Schmidt, U.Burkert und R.Prewo

Institut für Organische Chemie, Biochemie und Isotopenforschung, Universität Stuttgart, 7000 Stuttgart 80, Pfaffenwaldring 55, Germany

(Received in Germany 9 August 1975; received in UK for publication 22 August 1975)

Unsere Untersuchungen an heterotropilidenanalogen, sechsgliedrigen Heterocyclen mit acht delokalisierbaren π -Elektronen der Struktur $\underline{1}$ haben gezeigt, daß durch Anionbildung die elektronische Destabilisierung besonders deutlich hervortritt und Ausweichreaktionen gefördert werden $^{2-6}$). Bei den Ausweichreaktionen spielt die Stabilisierung der negativen Ladung durch Ausbildung von bicyclischen Anionen $\underline{2}$ mit 1-Azallylanionstruktur z. B. bei 1.3-Oxazinen 2,3) und 1.3-Thiazinen 5 bzw. 1.3-Diazallylstruktur bei 1.3.5-Oxdiazinen 6,7) eine wichtige Rolle. Dem oxepinanalogen Pyrananion $\underline{4}$ steht durch Valenzisomerisierung zum bicycli-

schen Anion $\underline{5}$ eine vergleichbare Stabilisierung der negativen Ladung nicht offen; deshalb ist die Untersuchung der Anionbildung von besonderem Interesse. Als Modellsubstanzen wurden die Pyrane $\underline{3a}$ - \underline{c} ausgewählt.

Mit Butyllithium/THF wird aus $\underline{3}\underline{a}$ bei -80° C bis -120° C nur in geringem Umfang (unter 3 %) das entsprechende Pyrananion $\underline{4}\underline{a}$ als stabile blauviolette Lösung erhalten ($\lambda_{\max}^{\text{THF}} = 584 \text{ nm}$) 8). Mit einem großen Überschuß an n-Butyllithium wird, vermutlich über das Cyclopentadienoxidanion $\underline{5}\underline{a}$, in geringem Umfang das Cyclopentadienderivat $\underline{6}\underline{a}^9$) gebildet [Schmp.: $79-80^{\circ}$ C, Ausb. 28 %; $\frac{1}{1}$ HNMR $\frac{10}{1}$): HA : 2.388 (t); HB 1.4-0.58(m)]. Erst mit Lithiumdiisopropylamid als Base entsteht in THF bei -80° C im Gleichgewicht, nachgewiesen durch Deuterierung mit Methanol-O-d, das Pyrananion $\underline{4}\underline{a}$ zu 40-60 %. Daraus läßt sich für $\underline{3}\underline{a}$ ein

3478 No. 40

pk_a-Wert von 37±2 ableiten¹¹⁾. Das 2.6-Diphenyl-4H-pyran <u>3b</u> liefert unter den gleichen Bedingungen zwar noch das tiefblaue Anion <u>4b</u>, nach Deuterierungsversuchen sind jedoch weniger als 5 % Anion <u>4b</u> im Gleichgewicht mit dem Pyran <u>3b</u>. Beim unsubstituierten 4H-Pyran <u>3c</u> konnte Anionbildung mit den genannten Basen in THF auch UV-spektroskopisch nicht nachgewiesen werden.

Dieses Ergebnis zeigt sehr deutlich die geringe Tendenz der 4H-Pyrane $\underline{3}$ in anionische Systeme mit formal acht delokalisierbaren π -Elektronen überzugehen. Dieses Phänomen ist deshalb so ausgeprägt, weil die Valenzisomerisierung von $\underline{4}$ zu $\underline{5}$ durch hohe Ringspannung und Ausbildung eines Allylanion-Systems keinen energetischen Ausweg bietet.

Basenbehandlung von $\underline{3a}$ und $\underline{3b}$ über längere Zeit oder rascher bei -30° C und darüber liefert die Aktivierungsenergie für irreversible Folgereaktionen. Dabei werden über das Cyclopentadienolat $\underline{7}$ die Cyclopentadiendimeren $\underline{8a}^{9}$) (Schmp. 146° C) und $\underline{8b}^{9}$) erhalten. Ihre Struktur und die endo-Verknüpfung der

3479

beiden Ringe folgt aus den NMR-Spektren.

Die geringe Neigung zur Anionbildung bei den Pyranen wird erwartungsgemäß bei den Dihydropyridinen noch übertroffen (s.Tab. 1). Deutlich zeigen die pk_a -Werte in Tab.1 den anionstabilisierenden Einfluß von Schwefelatomen, ein Phänomen, das auf die Übernahme des zusätzlichen Elektronenpaares durch energetisch tiefliegende d-Orbitale 13) oder antibindende σ -Orbitale 14) zurückzuführen ist. Das Sauerstoff- und Stickstoffatom weisen solche Orbitale nicht auf; deshalb ist das anionische cyclische 8π -System wesentlich energiereicher. Die Differenz von ca. 17 pk-Einheiten zwischen dem Pyran und dem Thiopyran ist jedoch so außergewöhnlich 15), daß man den beiden Systemen – wie vorgeschlagen 4) – verschiedene Elektronenkonfigurationen zuweisen muß. Für die Systeme mit Ringgliedern aus der ersten Achterperiode ist nach allen Befunden die Konjugation von acht delokalisierbaren π -Elektronen der entscheidende Gesichtspunkt 16).

Tab. 1: pk_-Werte in THF 10)

Verbindung	pka
<u>3a</u>	37 ±2 a)
N-Methyl-2.4.6-triphenyl-1.2-dihydropyridin	> 40 a)
2.4.6-Triphenyl-4H-thiopyran	19,5±1 ^{a,b)}
2.4.6-Triphenyl-4H-1.3-thiazin	22,5±1 ^{b)}

a) thermodynamische Acidität, b) kinetische Acidität

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

- 1) Heterocyclische 8m-Systeme, 10 Teil 9, s. 1. c. 6
- 2) R.R.Schmidt, Angew. Chem. <u>83</u>, 622 (1971); Angew. Chem. Int. Ed. Engl. 10, 572 (1971)
- 3) R.R.Schmidt, W.J.W.Mayer und H.U.Wagner, Liebigs Ann. Chem. 1973, 2010
- 4) R.R.Schmidt und U.Burkert, Tetrahedron Lett. 1973, 4355
- 5) R.R.Schmidt und M.Dimmler, Chem. Ber. 108, 6 (1975)
- 6) R.R.Schmidt, Angew. Chem. im Druck
- 7) R.R.Schmidt, unveröffentlichte Untersuchungen
- 8) Bei Temperaturen oberhalb -20° C ist λ_{max}^{THF} = 548 nm; Ursache dieser Hypsochromie sind temperaturabhängige Ionenpaargleichgewichte.
- 9) Alle neu synthetisierten Verbindungen haben korrekte Elementaranalysen.
- 10) Alle NMR-Spektren wurden in $CDCl_3$ aufgenommen mit Tetramethylsilan als innerem Standard; chemische Verschiebung in δ .
- 11) U.Burkert, Dissertation Universität Stuttgart 1974.
- 12) Das ¹HNMR-Spektrum von <u>8b</u> wurde durch Simulation ausgewertet (R.P.)
- 13) W.G.Salmond, Quart.Rev. (Chem.Soc., London) 22, 253 (1968);
 R.Gleiter und R.Hoffmann, Tetrahedron 24, 5899 (1968) u. dort zit. Lit.
- 14) S.Wolfe, A.Rank und I.G.Csizmadia, J. Amer. Chem. Soc. <u>91</u>, 1567 (1969)
- 15) D.Seebach, Angew. Chem. 81, 690 (1969); Angew. Chem. Int. Ed. Engl. 8, 639 (1969); Synthesis 1969, 17.
- 16) Ungeklärt bleibt, weshalb das Thiazin weniger acid ist als das entsprechende Thiopyran 3a.